Overview of Climate Change in Australia and its implications for the Barossa region

Dr Graham Green, Principal Advisor Climate Change Science, Department for Environment and Water

CLIMATE CHANGE - THE BASICS

Greenhouse effect (natural)

+ Additional greenhouse gases (approx. 37 Gt/y) (unnatural)

Regional climate change

Temperature projections – global

Australian mean temperature anomaly

Mean temperature anomalies averaged over Australia (as calculated from the 1961-1990 average). The black line shows the 11-year moving average. Roll over or touch each year to view the anomaly.

Source: Bureau of Meteorology 2019

Australian continent average annual temperature anomalies 1910 – 2018 (compared with 1961-1990 average)

Government of South Australia

(CSIRO – BoM State of the Climate report 2018)

Temperature projections – Adelaide and Mt Lofty Ranges

Projected average annual temperature changes compared with 1986 – 2005

(Source: SA Climate Ready)

2013 Australia's hottest year on record

Source: Dr Karl Braganza, Director of Climate Monitoring, Bureau of Meteorology

Summer of 2012/13

Australia's hottest summer on record (until 2018/19)

DATA SOURCES. Bold. (2013a). Special Climate Statement 43 - extreme hear in January 2013. Bold. (2013b). Special Climate Statement 44 - extreme rainfall and Noodhy in coestal Gueensland and New South Weber.

2013/14 – Another 'angry summer'

Source: BoM 2014a-h; The Age 18 January 2014; The Age 11 February 2014

www.climatecouncil.org.au

Source: Dr Karl Braganza, Director of Climate Monitoring, Bureau of Meteorology

Rainfall projections – global

April to October rainfall deciles for the last 20 years (1999–2018).

(CSIRO – BoM State of the Climate report 2018)

South eastern Australia southern wet season* annual rainfall anomalies compared with 1961-1990 average (*April-Oct) Bureau of Meteorology

Over water planning timescales, annual variability is much more influential than longerterm decline.

However, the probability that any year is drier than average will increase over time.

Rainfall projections – Adelaide and Mt Lofty Ranges

Projected average annual rainfall changes (%) compared with 1986 – 2005

(Source: SA Climate Ready)

Annual variability in rainfall – an example

Over the timescales of water planning (5 – 10 years), annual variability is much more influential than longer-term decline.

However, the probability of a year being drier than average will increase over time.

Long-term (1900-2017) rainfall trends and cumulative deviation from mean annual rainfall at Tanunda (BoM station 23318) Trendline

Government of South Australia

Department for Environment and Water